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The deep sea has been described as the last major
ecological frontier, as much of its biodiversity is yet to
be discovered and described. Beaked whales (ziphiids)
are among the most visible inhabitants of the deep sea,
due to their large size and worldwide distribution, and
their taxonomic diversity and much about their natural
history remain poorly understood. We combine genomic
and morphometric analyses to reveal a new Southern
Hemisphere ziphiid species, Ramari’s beaked whale,
Mesoplodon eueu, whose name is linked to the Indigenous
peoples of the lands from which the species holotype and
paratypes were recovered. Mitogenome and ddRAD-
derived phylogenies demonstrate reciprocally monophy-
letic divergence between M. eueu and True’s beaked
whale (M. mirus) from the North Atlantic, with which it
was previously subsumed. Morphometric analyses of
skulls also distinguish the two species. A time-calibrated
mitogenome phylogeny and analysis of two nuclear gen-
omes indicate divergence began circa 2 million years ago
(Ma), with geneflow ceasing 0.35–0.55 Ma. This is an
example of how deep sea biodiversity can be unravelled
through increasing international collaboration and
genome sequencing of archival specimens. Our consul-
tation and involvement with Indigenous peoples offers a
model for broadening the cultural scope of the scientific
naming process.

1. Introduction
The Earth’s deep ocean remains less understood than the
surface of Mars [1]. However, much biodiversity is waiting
to be discovered in the deep sea, and there is great potential
for this region to contribute to and challenge major ecological
hypotheses [2]. Here, we focus on beaked whales (ziphiids),
which are among the most visible inhabitants, due to their
large size, worldwide distribution and surfacing to breathe
[3]. Even so, their diversity and ecology remain obscure,
with seven of the 23 species in the IUCN Red List classified
as Data Deficient.

Our understanding of beaked whales has been limited by
the scarcity of records, with many species known only by a
handful of incomplete skeletons [4]. Beaked whales typically
spend limited time at the surface [5], during which they are
difficult to distinguish [6]. Genetic tools have been instrumen-
tal in developing an understanding of the diversity and
phylogenetic relationships among ziphiids [7], but the appli-
cation of genomic tools to understand their ecology and
evolution has been limited [8] despite recent technological
advances [9].
Here, we use a range of genomic approaches to access gen-
etic information from museum and archival specimens of
varying age and quality to investigate the taxonomic status
of disjunct populations of True’s beaked whale (Mesoplodon
mirus). First described by Frederick W. True in 1913 from a
male that stranded in North Carolina, USA [10], the known
distribution (figure 1) of M. mirus grew to include much of
the temperateNorth Atlantic (NA) [3,6,12]. In 1959, the species
was first reported in the Southern Hemisphere (SH) off South
Africa [13], with the subsequent discovery of a breeding popu-
lation [14]. Additional SH specimens were reported from
Mozambique [15], Tristan da Cunha [16], Walter Shoals
(south of Madagascar) [3], southern Brazil [17], Australia [18]
and Aotearoa New Zealand [11] (figure 1).

NA and SH True’s beaked whales are separated by thou-
sands of kilometres, raising questions about their level of
divergence [6,19]. Initial suspected differences in pigmenta-
tion between hemispheres [19] have been outweighed by
greater variation in colouration within NA, reducing evi-
dence for differentiation [6]. Similarly, the only
comprehensive anatomical analysis to date (based on six
SH and nine NA specimens) found differences in just one cra-
nial measurement out of 47 [19]. Molecular analyses did
reveal notable divergence between NA and SH specimens,
but this was based on mitochondrial control region sequences
from four individuals [20,21] and ad hoc data collected there-
after for species identification [6,11]. Here, we take an
integrative approach, combining genomic and morphological
datasets, to resolve this taxonomic quandry.
2. Results
(a) Genomes reveal deep genetic divergence
To resolve the status of SH ‘True’s’beakedwhales,we first exam-
ined interhemispheric divergence using both complete
mitogenomes and nuclear single-nucleotide polymorphisms
(SNPs; figure 2). A Bayesian phylogeny of ten NA and two SH
mitochondrial genomes clustered individuals from each hemi-
sphere into well-supported, reciprocally monophyletic sister
clades. Within this phylogeny, the holotype of M. mirus
(USNM175019) clearly groups within the NA group (figure 2c);
the holotype for the SH form clusters with the other SH sample
with high support. The same pattern appears in a phylogeny
constructed using 17 217 SNPs derived from ddRADseq for
five samples from each hemisphere and three other beaked
whale species (44 total samples; figure 2a; electronic supplemen-
tary material table S1 and dataset S1). The divergence between
M. mirus in NA and SH appears greater than in the two other
globally distributed beaked whales: Cuvier’s beaked whale
(Ziphius cavirostris, n = 15) andBlainville’s beakedwhale (M. den-
sirostris, n= 9) (figure 2a). The ddRAD genetic clustering results
revealed little admixture between the NA and SH samples,
suggesting no major introgression between the two forms after
divergence (figure 2b).

The deep genetic split between the NA and SH is sup-
ported by high levels of genetic differentiation based on
15 761 ddRADseq SNPs in M. mirus (NA/SH n = 5/5, FST =
0.64, p < 0.01, with 1909 (12%) fixed differences, estimated
error rate of 0.002 per SNP allele), mitogenomes (NA/SH
n = 9/2, dA= 0.04, FST= 0.96, p < 0.01) and a shorter fragment
of the mitochondrial control region for which more samples
were available (304 bp, NA/SH n = 19/14, dA = 0.04, FST =
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Figure 1. Sampling locations in the NA (black circles) and SH (yellow circle). Global map viewed as a Spilhaus projection that shows the connectedness of the ocean,
with sampling locations and distribution of Mesoplodon mirus and proposed species M. eueu shown by the key (sourced from [3,11]), with the artist’s impression of
the species in top right. Credit: Vivian Ward, University of Auckland.
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0.85, p < 0.01; electronic supplementary material, table S2).
This level of differentiation is consistent with that proposed
to indicate species separation in cetaceans [23].

A time-calibrated Bayesian analysis of the mitochondrial
genomes of the focal species and its closest relative based on
previous cetacean phylogenies [24] dates the NA/SH split to
approximately 2 Ma (95% HPD: 1.4–2.6 Ma; figure 2c). To
examine the pattern of divergence further, we sequenced two
whole nuclear genomes using Illumina short-read technology,
one from each ocean basin (NA, 51x and SH 7x coverage). An
associated hybrid pairwise sequential Markovian coalescent
(hPSMC) analysis suggests that the cessation of gene flow
likely occurred around 0.55–0.35 Ma (figure 2d).

The SH dataset has significantly higher nuclear diversity
(SNP observed heterozygosity HO = 0.159, 95% CI: 0.156–
0.163, t-test t =−10.85, Kolmogorov–Smirnov D = 0.053,
p < 0.001, genome-wide heterozygosity h = 0.00223, 95%
CI: 0.00220, 0.00225, t = 35.49, p < 0.001) than the NA dataset
(HO = 0.134, 95% CI:0.131–0.1370, h = 0.00165, 95% CI:
0.00162, 0.00168), but there was no significant difference in
mitochondrial control region haplotype diversity (Hd,
304 bp) between the two regions (SH Hd = 0.84, 95% CI:
0.813–0.867, NA Hd = 0.80, 95% CI:0.772–0.828, permutation
test [25], p > 0.05). This is consistent with the estimates of
effective population size during the last glacial maximum
derived from whole-genome data using PSMC of approxi-
mately 17 000 for the SH and approximately 13 000 from
NA (figure 3). Although down-sampling flattened the
PSMC trend (electronic supplementary material, figure S1),
the recent expansion was consistent with the Tajima’s D
statistic from ddRAD data suggesting that both the NA
and SH forms have undergone expansion in recent evolution-
ary time (SH =−0.11, 95% CI: −0.134, −0.089, t =−9.82;
Wilcoxon signed-rank test V = 14240039, NA =−0.164,
95% CI: −0.187, −0.141, t =−13.856, V = 10858056, p < 0.001
for all analyses).
(b) The skulls of the two forms are distinct
To determine morphological distinctiveness, we conducted a
geometric morphometric analysis of 15 NA and 23 SH skulls,
including the holotype of M. mirus and holotype of the SH
form (figure 4a–e; electronic supplementary material, dataset
S2). A principal component analysis (PCA) and associated
PERMANOVA (F = 18.98; p = 0.0001) of eight size-standar-
dized cranial measurements (electronic supplementary
material, dataset S2, figure S2) clearly separate NA and SH
individuals (figure 4f; electronic supplementary material,
figure S3). The first two principal components account for
83.3% of variance and reveal the southern form has a shorter
rostrum and mandibular symphysis (PC1: 56.25%), a broader
rostral base and slightly more expanded premaxillary crests
and sac fossae (PC2: 26.31%; first six PCs comprise 96% of
the variation).
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Both visual examination and morphometric analysis
(F = 3.93, p = 0.017) show that the SH individuals are sexually
dimorphic (female: figure 4; male: electronic supplementary
material, figures S4–S6). Females (figure 4) have a longer man-
dibular symphysis, while males (electronic supplementary
material, figure S4) are significantly larger (greater bizygo-
matic width: mean = 359.4 mm versus 346.6 mm; t = 2.39, p =
0.028) and have a pair of large, erupted apical ‘tusks’, more
ossification of the mesorostral cartilage (electronic supplemen-
tarymaterial, figure S6 [19]), awider rostrumbase, and broader
premaxillary crests and sac fossae. In the NA form (female:
electronic supplementary material, figure S7; male: electronic
supplementary material, figure S8), males have enlarged
‘tusks’, more mesorostral ossification, broader premaxillary
crests and a shorter mandibular symphysis also (F = 4.98, p =
0.013; electronic supplementary material, figure S3) but the
sexes are comparably sized (mean bizygomatic width =
350.25 mm versus 348.43 mm; t = 0.34, p = 0.74).
(c) Introducing a new species: Ramari’s beaked whale,
Mesoplodon eueu sp. nov

Molecular and morphological data reveal that True’s beaked
whales from the NA and SH form two distinct, long-diver-
gent evolutionary lineages, consistent with species under
the Genealogical Concordance Species Concept [29]. There-
fore, we propose that the SH form should be reclassified as
a new species.
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Systematic biology
Cetacea Brisson 1762
Ziphiidae Gray 1865
Mesoplodon Gervais 1850
Mesoplodon eueu sp. nov.
Holotype
NMNZ MM003000, a pregnant, 5.06 m long adult female
named Nihongore by Te Rūnanga o Makaawhio. Collected
by Ramari Stewart, Nathaniel Scott andDonNeale after beach-
cast on 27 November 2011. The complete skeletons of the
female and fetus are held by Museum of New Zealand Te
Papa Tongarewa (NMNZ,Wellington, AotearoaNewZealand;
specimen MM003000), and a tissue sample is held in the New
Zealand Cetacean Tissue Archive (NZCeTA, University of
Auckland, Auckland, Aotearoa New Zealand; all institutional
abbreviations in electronic supplementary material, S1).

Type locality
Waiatoto Spit, South Westland, Aotearoa New Zealand.

Paratypes
Adult females (PEM N0136 and PEM N3438) and adult male
(PEM N1114) held at Port Elizabeth Museum (Gqeberha,
South Africa) and adult males (SAM-ZM-041596 and SAM-
ZM-039840) held at Iziko South African Museum (Cape
Town, South Africa). Full description of paratypes is found
in electronic supplementary material S2.
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Etymology
The scientific and commonnames acknowledge linkswith Indi-
genous communities in South Africa and Aotearoa New
Zealand, respectively, and were chosen in consultation with
these peoples. Most of the South African strandings come from
territory inhabited by theKhoisan peoples. Guided by theKhoi-
sanCouncil, we chose the name //eu//’eu (simplified to eueu to
fit nomenclature standards; correct pronunciation available in
associated audio clip a1 in the electronic supplementary
material), which means ‘big fish’ in Khwedam (from the Khoe
language family). In Aotearoa New Zealand, Māori cultural
expert Brad Haami developed a shortlist of potential names
meaningful in theMāori language,whichwas then sent for com-
ment to Te Rūnanga o Ngāi Tahu. The selected common name,
Ramari’s beakedwhale, pays homage toMāori tohunga (expert)
Ramari Stewart, who has kept traditional knowledge alive, con-
tributed extensively to scientific research on marine mammals,
and helped prepare the skeleton of the holotype. The word
‘Ramari’ means a rare event in the Māori language, reflecting
the elusive nature of most beaked whales.

Diagnosis
Molecular characteristics
M. eueu differs from M. mirus based on nuclear DNA
markers, and from M. mirus and its closest relatives
M. europaeus, M. ginkgodens and M. bidens using mtDNA
markers (figure 2). M. mirus is distinct from all other meso-
plodont species based on previous mitochondrial and
nuclear DNA trees [7,20,24].

Mitochondrial DNA: analysis of mitochondrial data includes
sequences from the holotypes of both M. mirus and M. eueu
at all sequence lengths. Over the 304 bp mitochondrial con-
trol region segment, M. eueu is distinguished by seven fixed
differences from M. mirus, with FST = 0.85 ( p < 0.01), dA =
0.04 between the two species. At the full mitochondrial
genome lengths, M. eueu is distinguished by 579 fixed differ-
ences from M. mirus with FST = 0.96 ( p < 0.01) and dA = 0.04
(electronic supplementary material, table S2).

Nuclear DNA: reduced representation sequencing with ddRAD
showed M. eueu had a distinct admixture pattern to M. mirus
(figure 2), and an FST = 0.64 (p < 0.0001) was estimated between
the twospecies.M.mirusandM.eueuweredistinguishedby1909
fixed differences (12%, per SNP allele error rate = 0.002), across a
dataset of 15 671 SNPs found between or within both species.
Comparison of one whole nuclear genome each from M. mirus
andM. eueu showed a level of nucleotide divergence of 0.28%.

Morphological characters
M. eueu is a larger (5.3 m) species ofMesoplodon differing from all
other members of the genus except M. mirus, M. hectori and M.
perrini in having tusks positioned at the tip of the mandible. It
also differs fromM. hectori andM. perrini in having smaller, less
triangular tusks and fromM. mirus in having a relatively shorter
rostrum with a wider base, a shorter mandibular symphysis,
wider premaxillary sac fossae and crests, and a taller cranium.

External appearance
The external appearances of M. eueu and M. mirus are not
known to be consistently distinguishable. Both species are
rotund mesoplodonts with bodies that taper towards the
tail and rostrum, with somewhat bulbous and well-defined
melons, a mostly straight beak and short, straight gape.
Colouration is generally grey with a dark eye patch in both
species, but there may be specific colouration patterns
linked to M. eueu; for example, a female that stranded in
South Africa showed a whitish dorsal colouration from the
fin to caudal peduncle [14]. However, Aguilar et al. [6]
reported M. mirus with varying dorsal and ventral white
colouration in the Canary and Azores Islands, so colouration
patterns linked to species cannot yet be conclusively defined.

Distribution
M. eueu probably occurs throughout temperate SH waters,
with reports from several locations. Geneticmethods have con-
firmed at least some of these records in South Africa ([20], this
study), Australia [20] and Aotearoa New Zealand [11].

Nomenclatural acts
This published work and the nomenclatural acts it contains
are registered in ZooBank (http://zoobank.org/), the online
registration system for the International Commission on
Zoological Nomenclature (ICZN). The ZooBank Life Science
Identifier is urn:lsid:zoobank.org:pub:C61A1A33-B234-476E-
AA24-86C6ED130C10, and for the new species is urn:lsid:zoo
bank.org:act:C56121C4-1E15-4A07-A270-D92AF43AE74A.
3. Discussion
As many as 1.5 million species await discovery in the deep
sea [30]. Here, we show that detailed analysis of even a
small number of samples can yield profound insights into
the diversity and phylogeography of the species that occur
in this vast habitat. As one of the few mammalian deep sea
specialists, it is perhaps not surprising that ziphiids are
among the most speciose cetacean lineages. Our results
emphasize this pattern and corroborate the idea that the
deep sea is more biodiverse than previously thought [2].

Deep sea ecosystems are governed by temperature, primary
productivity and habitat complexity [31]. Modelling of energy
input suggests that deep sea biodiversity peaks at latitudes of
30–50° [32], coinciding with the ranges of M. eueu and M.
mirus. Based on our time-calibrated, phylogenetic reconstruc-
tion of mitogenomes, the initial divergence of these species
may have been driven by intense cooling in tropical ocean
temperatures approximately 2 Ma, which in turn would have
facilitated cross-equatorial dispersal from one hemisphere into
another. It is unclear in which ocean basin the ancestral species
originated, but the slightly greater genetic diversity and wider
geographical range of M. eueu may indicate a southern origin.
Either way, our hPSMC analysis suggests that by 0.35 Ma all
significant gene flow between the two hemispheres had
ceased. After divergence, the population size of both species
probably expanded as M. mirus and M. eueu showed signals
of expansion in recent evolutionary time.

Examples of anti-tropical species pairs and population
structuring are common among cetaceans and other marine
mammals [33,34]. In our analysis, M. densirostris also shows
distinct populations in the NA and Indo-Pacific (figure 2a),
but with far less divergence than M. mirus and M. eueu.
This may indicate dispersal during a more recent glacial
period, or greater gene flow in M. densirostris with its more
continuous, tropical distribution [3]. Mesoplodon eueu is the
fifth beaked whale species to be described or elevated to
species status in the past few decades [21,35–37]. Ziphiids
occur primarily offshore, spend little time at the surface [5]
and are hard to distinguish visually [6], which makes them
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difficult to study. An integrative approach combining genetic
and morphometric analysis has proved effective at uncovering
the diversity and relationship of these elusive animals [21,36],
and is likely to produce further taxonomic insights in the
future. Our study required international collaboration, generat-
ing a global archive (International Tissue Archive for Beaked
Whale) of ziphiid samples collected over five decades. Exploit-
ing everything fromwhole-genome sequences to shortmtDNA
fragments allowed us to use samples of varying quality and
thus maximize geographical coverage. Overall, our results
highlight the value of museum and tissue archives in docu-
menting and understanding speciation, especially when
paired with techniques like genomic sequencing.

Describing a new species requires important decisions
around the naming of the new taxon. We sought to recognize
Indigenous peoples’ deep connection with, and knowledge
of, the natural environment by consulting with them on
potential species and common names. This is part of a critical
shift in the global science community, which strives to collab-
orate with Indigenous knowledge holders in ecology [38,39]
and conservation biology [40]. Here, this has resulted in
one of the first cetaceans named after an Indigenous woman.
3

4. Methods
(a) Dataset overview
The geographic origin of and analyses used in each sample is
summarized by species in electronic supplementary material,
table S1. Full metadata, including sex, collection date and
location, are given for samples in the genomic and morphometric
analyses in the electronic supplementary material, datasets S1
and S2, respectively.

(b) Investigating genomic differentiation
(i) DNA extraction and genomic sequencing
DNA extraction method varied depending on the sample type.
For tissue, DNA was extracted either using the Qiagen DNeasy
kit, Gentra Puregene kit or using standard phenol:chloroform
methods [41,42]. For bone, extraction followed the silica-based
method [43], as modified by [44] or [45]. Genomic sequencing
was conducted using different methods and platforms for
double digest Restriction Associated DNA (ddRAD), shotgun
nuclear and mitogenome analyses (see electronic supplementary
material, S3). To increase the sample size for the mitochondrial
control region analysis, we combined novel unpublished with
previously published [6,11,20] data (electronic supplementary
material, dataset S1). PCR amplification was conducted with
forward primer Dlp1.5 [46] and reverse primer Ha500R_R
(5’-CCATCGAGATGTCTTATTTAAGAGG-3’) using standard
protocols [7]. PCR products were sent to Macrogen Europe for
Sanger sequencing.

(ii) ddRAD data analysis
STACKS v. 2 [47] was used to genotype the samples using
the reference mapped pipeline, employing the algorithm of
Maruki & Lynch [48] that accounts for sequencing quality, allele
balance and allele frequencies. For the phylogenetic analysis, we
used a dataset comprising the species of interest, M. mirus, two
other globally distributed beaked whales to compare divergence
patterns, M. densirostris and Ziphius cavirostris, and the more clo-
sely related M. bidens (electronic supplementary material, table
S1). For the population genomics analysis, we focused on M.
mirus samples. Both analyses followed the same pipeline. First,
reads were demultiplexed using the process_radtags command
in the STACKSv2 program and aligned against the M. bidens
genome (GenBank: PRJNA399476) using BWA-MEM v. 0.7.17
[49]. The SNP and genotyping calling likelihood α = 0.01, ensuring
only high-quality variants were called. We used a tiered and itera-
tive approach to filtering, starting with low cut-off values for
missing data (applied separately per locus and individual) and
finalizing the dataset with higher thresholds, an approach that
can maximize available data [50]. Genotyping error rate and dis-
cordant loci were identified by running one sample through the
laboratory work and genotyping pipeline twice. Differences
between these replicates were used to identify discordant loci
that were then removed from the analysis and estimate a per
SNP allele error rate for the pipeline. This QC pipeline was done
in R v. 3.6.0 [51] and VCFtools v. 0.1.12a [52] and code is available
at https://github.com/emmcarr/Mmirus.

Loci were exported from STACKS v2 as a phylip file and a
total of 14 468 parsimony informative sites were used to con-
struct a maximum-likelihood phylogenetic tree in IQtree [53]
using a general time-reversible model with unequal rates and
unequal base frequencies [54] and ascertainment bias correction.
No partitioning was used. Confidence in the clades was given by
standard nonparametric bootstrapping (n = 1000).

We estimated levels of genetic differentiation using FST calcu-
lated with the R package hierfstat [55], with significance assessed
using the permutation method in the R package strataG [56]. The
number of fixed differences between the NA and SH was
estimated using the R package dartR [57] and Tajima’s D was
estimated for each region using vcftools (sliding window of 10
000 bases), with significance from zero of the latter tested with
t-test and Wilcoxon signed-rank test in R. We estimated mean
and 95% CI for observed heterozygosity [58] for NA and SH
using hierfstat and compared them using t-test and Kolmo-
gorov–Smirnov tests in R. Admixture was assessed using the
genetic clustering program sNMF [59] implemented in the
R package LEA [60]. The best k was inferred by calculating
cross-entropy values from 10 runs of k set from 1 to 4.

(iii) Mitochondrial genome (mitogenome) assembly
Mitochondrial reads were assessed prior to and after trimming
and filtering reads with FastQC v. 0.11.8a [61]. Adapters were
removed and sequences were trimmed in BBDUK (options: ref =
adapters ktrim = r k = 23 min k = 8 h dist = 1 tbo qtrim = rl trimq =
15 ma q = 20 min len = 40: https://jgi.doe.gov/data-and-tools/
bbtools/bb-tools-user-guide/bbduk-guide/). Trimmed reads
were mapped to a M. mirus reference mitogenome (Genbank:
NC_042217.1) using BWA-MEM. PCR duplicates were removed
with SAMtools v. 1.9 (rmdup command: [62]). The consensus
sequence was generated with ANGSD v. 0.931 [63] (options:
-doFasta2 -doCounts1 -minQ30 -minMapQ30 -setMinDepth3).

(iv) Bayesian mitogenome phylogeny
All mitogenomeswere aligned usingMAFFT v. 7.388 [64] withM.
bidens, M. ginkgodens and M. europaeus as outgroups, M. mirus’s
most closely related species [24]. The 12 s rRNA, 16 s rRNA and
13 protein-coding mitochondrial genes were extracted and indivi-
dually aligned. Stop codons in coding genes were manually
removed in Geneious Prime 2020.1.2 (https://www.geneious.
com/). The final alignments were concatenated into a combined
alignment and substitution models were inferred with Partition-
Finder v. 2.1.1 [65]. There were eight subsets (electronic
supplementary material, table S3) which were adjusted to fit the
BEAUTi v. 2.5.2 [66] XML file generator and linked with a relaxed
clock log normal and a linked Yule tree model. ThreeMRCA node
priors were implemented based on fossil evidence [24] (electronic
supplementary material, table S4). The MCMC model was
implemented in BEAST2 v. 2.5.2 [66] with 15 million chains and
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sampled every 1500 steps. Themodelwas run three separate times
to ensure convergence. The log files were inspected with Tracer v.
1.7.1 (https://github.com/beast-dev/tracer/releases/tag/v1.7.
1) and combined with LogCombiner v. 2.5.2 after a 10% burn-in.
The tree files were combined after a 10% burn-in with LogCombi-
ner and a Maximum Clade Credibility (MCC) tree was generated
with TreeAnnotator v. 2.4.2 [66]. The final MCC tree was visual-
ized in FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/
figtree/).

(v) mtDNA control region analysis
The mtDNA control region sequences were aligned and trimmed
using Geneious Prime 2020.1.2. Given their origins, sequences
varied in length and overlap. We created three datasets of
lengths 600 bp (n = 28), 423 bp (n = 32) and 304 bp (n = 33), balan-
cing length and sampling representation. The phylogenetic
analyses were conducted on each datasets using MrBayes [67]
(GTR gamma: 1 000 000 replicates, 100 000 burn-in) and NJ (HKY:
10 000 bootstraps) as implemented in Geneious Prime. Haplotype
and nucleotide diversity, as well as estimates of dA, FST, KST and
number of fixed differences between ocean basins were estimated
in DNAsp v. 6 [68]. Significant differences in diversity statistics
between NA and SH were assessed using a permutation test [25].

(vi) Nuclear genome assembly and haploid consensus sequence
generation

Genomes were assembled following steps modified from [69]. For
genome assembly, raw sequences were inspected for QC with
FastQC. Sequence adapters and short reads were trimmed using
BBDUK and subsequently re-assessed with FastQC. Remaining
reads were mapped to the M. bidens [8] reference genome using
the BWA-MEM algorithm. PCR duplicates were removed with
Samtools -rmdup command. Consensus haploid sequences for
hPSMC were generated with ANGSD (minimum quality score =
25, minimum mapping score = 5, minimum read depth = 3,
-uniqueonly 1 and -remove_bads 1). Autosomal scaffolds and
scaffolds shorter than 100 000 base pairs were filtered out using
the filterbyname.sh script from BBMAP v. 28.70 (https://jgi.doe.
gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/).
Assembly depth of coverage estimates were generated with SAM-
tools. The NA assembly was downsampled to the same depth
of coverage of SH assembly using SAMtools to account for inflated
levels of heterozygosity in the lower depth of coverage assemblies.
Subsequently, the two genome heterozygosity estimates were
calculated with ROHan [70]. Windows containing less than
90% called sites were filtered out, the mean and 95% CI were cal-
culated each for NA and SH, and the distributions compared with
a t-test in R.

(vii) Pairwise sequential Markovian coalescent and hybrid PSMC
modelling

The PSMC plot was generated following [22]. Sex-linked scaf-
folds [8] were removed from the assembly and a subsequent
diploid genome was generated with bcftools using a minimum
depth of coverage of five and mapping quality score of 30. The
depth of coverage for M. mirus was downsampled to 5x–40x
using SAMtools for a more similar comparison and to see the
effects of the depth of coverage on PSMC plots (electronic sup-
plementary material, figure S1). The PSMC file was generated
and visualized in gnuplot v. 5.2 (options: −N25-t15-r5-p"4 + 25
* 2 + 4 + 600: http://www.gnuplot.info/). The plot was scaled
using a general odontocete mutation rate of 2.34 × 10−8 per
year [27], following previous similar work [28], and a generation
time of 25.9 years (based on Berardius [26]).

The two nuclear consensus genomes were combined into a
single pseudo-hybrid psmcfa filewith the psmcfa_from_2_fastas.py
script [71]. A PSMC run was implemented as above [22] with a
modified -s10 setting. From the hybrid M. mirus hPSMC output,
we manually visualized the text file output from the psmc_plot.pl
script to estimate the pre-divergenceNe. TheNe of 17 000 was incor-
porated to run simulations dating the end of gene flow from 300 000
to 600 000ya in 50 000 year intervals using ms [72]. All simulations
were plotted with the real data and the range for dating the end
of gene flow was estimated from the two simulations which
occurred closest to the real data without overlapping it, within the
range of 1.5–10 × the pre-divergence Ne.

(viii) Identity by state calculation
The haploid pairwise identity between NA and SH sample par-
titions was calculated in ANGSD. The identity by state (IBS)
value was calculated with the -doIBS 2 (consensus base) com-
mand and included filters including only sites present in both
bam files with a minimum depth of coverage of 5 and reads
that had a mapping score of 30, reads that mapped uniquely
(samtools flag 256) and bases with a quality score of 30.

(c) Investigating morphological variation
(i) Skull morphometrics
We quantified the morphology 15 NA and 23 SH specimens
via eight measurements of the cranium and mandible
(electronic supplementary material, figure S5). Our sample
included the holotype of M. mirus (USNM175019) and M. eueu
(NMNZMM003000). All measurements were taken to the nearest
mm, divided by the bizygomatic width of the skull to account for
differences in body size (see [73] for the use of this metric as a
size proxy in cetaceans), log-transformed and summarized via
PCA using PAST 4.03 [74]. We tested for (i) interhemispheric
differences and (ii) sexual dimorphism per hemisphere via a
PERMANOVA. Missing values were estimated via mean value
imputation (PCA) or accounted for via pairwise deletion
(PERMANOVA: both PAST defaults).

Ethics. Biopsy samples were collected from M. mirus in the NA under
NMFS MMPA Permit #21371 and animal ethics protocol IACUC-
2015-007 to D.C. All other tissue samples come from beach cast ani-
mals that stranded between 1977 and 2018 across the species’ global
distribution (figure 1; electronic supplementary material, dataset S1).

Data accessibility. Code is available on the Github respository: https://
github.com/emmcarr/Mmirus. Metadata, including accession IDs,
for genomic samples are in the electronic supplementary material
[75]. Data are archived on NCBI (Bioprojects PRJNA766520 for
whole-genome data and PRJNA765474 for ddRAD data), European
Nucleotide Archive (Accession ID PRJEB47691 with details in elec-
tronic supplementary material, dataset S1) and Dryad (https://doi.
org/10.5061/dryad.wpzgmsbnq: ddRAD raw and demultiplexed
data, mtDNA alignments at all sequence lengths, complete mitogen-
omes that are also available on NCBI).
Authors’ contributions. E.L.C., M.R.M., M.T.O.: conceptualization, data
curation, formal analysis, funding acquisition, investigation, method-
ology, project administration, resources, visualization, writing—
original draft, writing—review and editing; M.L.M., F.G.M.,
G.J.G.H.: data curation, formal analysis, investigation, methodology,
resources, visualisation, project administration, writing—original
draft, writing—review and editing; M.L.D.: conceptualization, data
curation, funding acquisition, investigation, methodology, project
administration, resources, writing—original draft, writing—review
and editing; O.E.G.: funding acquisition, investigation, writing—
original draft, writing—review and editing; A.v.H., P.A.M., S.D.,
S.S.H., A.B.O., D.S., C.R.: data curation, formal analysis, resources,
investigation, writing—original draft, writing—review and editing;
R.C., project administration, funding acquisition, resources, writ-
ing—original draft, writing—review and editing R.B., N.A.S.,
C.S.B., S.B., D.Ch., D.Cl., N.J.D., C.E., R.E.F., J.G., V.M., J.G.M.,
A.A.M.-G., E.R., M.R., M.A.S., M.S.S.: funding acquisition, resources,
writing—original draft, writing—review and editing.

Competing interests. The authors declare no competing interests.
Funding. This work was supported by ONR grants N000141613017 to
E.L.C. and N.A. and N00014-18-1-2808 to C.S.B.; funds from the
NMNH Rebecca G. Mead and James G. Mead Marine Mammal

https://github.com/beast-dev/tracer/releases/tag/v1.7.1
https://github.com/beast-dev/tracer/releases/tag/v1.7.1
https://github.com/beast-dev/tracer/releases/tag/v1.7.1
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/bbmap-guide/
http://www.gnuplot.info/
http://www.gnuplot.info/
https://github.com/emmcarr/Mmirus
https://github.com/emmcarr/Mmirus
https://github.com/emmcarr/Mmirus
https://doi.org/10.5061/dryad.wpzgmsbnq:
https://doi.org/10.5061/dryad.wpzgmsbnq:
https://doi.org/10.5061/dryad.wpzgmsbnq:


royalsocietypublishing.org/journal/rspb

9
Endowment, NSF (USA) grant no. DEB-1457735 to M.S.S., P.A.M.
and J.G.; Brothers Hartmann Foundation grant no. AB28148 to
M.T.O.; NMFS, BOEM, and USA Navy funding to D.Ch. under the
Atlantic Marine Assessment Program for Protected Species. M.L.M.
was funded under the Marie Skłodowska-Curie grant agreement
no 801199; E.L.C. by a Rutherford Discovery Fellowship from the
Royal Society of New Zealand Te Apārangi. Irish Whale and Dolphin
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