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INTRODUCTION

Toxoplasma gondii is an intracellular obligatory
protozoan of felids (Splendore 1908, Nicolle & Man -
ceaux 1909). Although it typically causes no clinical
disease in the feline definitive host, it causes a wide
range of disease severity and even mortality in many
intermediate hosts (Bowman 2013). Disease severity
depends on the species, age, and immunity status of
the infected intermediate host, the T. gondii geno-

type, and the mode of infection (Assadi-Rad et al.
1995). Ingestion of sporulated oocysts from cat fecal
contamination, predation (ingestion of tissue cysts),
or congenital transmission are the only modes of
infection for the intermediate and definitive hosts.

Although estimates for feral cat populations within
Florida range from 2.8 to 5.3 million (Levy & Craw-
ford 2004), population estimates for feral cats across
the island of Puerto Rico are not known. With the
oocyst shedding potential of >1 million oocysts per
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cat per defecation, contamination potential increases
as the feral cat colony numbers increase (Dabritz et
al. 2007). An association between contaminated wa -
ter sources and sea otter mortalities (Miller et al.
2002) suggests that oocyst viability in the marine
environment, including seagrass beds serving as pri-
mary food sources for manatees, may be an exposure
risk for several manatee populations.

The West Indian manatee Trichechus manatus has
2 Endangered subspecies, the Antillean (T. m. mana-
tus) and Florida (T. m. latirostris) manatees. Manatee
grass Syringodium filiforme, turtle grass Thalassia
testudinum, and shoal grass Halodule wrightii make
up the majority of the diet of both subspecies (Mig -
nucci-Giannoni & Beck 1998, Lefebvre et al. 1999).
The first documented toxoplasmosis mortality in Flo -
rida manatees revealed tissue cysts with mild lesions
but no tachyzoites present in the brain (Buergelt &
Bonde 1983). Most recently, Smith et al. (2016) re -
ported disseminated toxoplasmosis with T. gondii tis-
sue cysts and tachyzoites stained by immunohisto-
chemistry and confirmed by PCR in a Florida
manatee. That study also reported a 6% seropreva-
lence in Florida manatees (n = 44). Bossart et al.
(2012) reported the deaths of 4 Antillean manatees in
Puerto Rico due to toxoplasmosis within a single
year, as well as a T. gondii seroprevalence in Antil-
lean manatees of 3% (n = 30).

Our study is the first attempt to concentrate oocysts
from the Antillean manatee’s main food source (sea-
grasses) to determine oocyst presence in the marine

environment and includes a T. gondii seroprevalence
survey on Florida manatees and Puerto Rico popula-
tions of the Antillean manatee.

MATERIALS AND METHODS

Collections

Puerto Rico seagrasses

Seagrass samples (n = 33) were collected by hand
from the ocean floor at 17 sites (Fig. 1) where mana tees
are known to forage, and placed in 0.5 l sealed plastic
bags with seawater. Three seagrass species were col-
lected (1 species bag−1, 2 bags site−1) and included tur-
tle grass, manatee grass, and shoal grass. Shoal grass
is not widespread in this region (Lefebvre et al. 1999),
so it was only collected at 2 sites. Seagrass was refrig-
erated (4°C) at the Puerto Rico Manatee Conservation
Center (PRMCC) until it was shipped on ice to the Uni-
versity of Tennessee College of Veterinary Medicine
(UTCVM) for processing and PCR.

Puerto Rico Antillean manatees

Serum samples (n = 3) from Antillean manatees at
the PRMCC were collected during routine health
examinations (Bonde et al. 2012). Serum samples (n =
2) from stranded Antillean manatees were collected

66

Fig. 1. Collection sites for 3 species of seagrass around the main island of Puerto Rico (+: 18.22° N, 66.59° W) in 2015 for Toxo-
plasma gondii testing. Manatee grass Syringodium filiforme and turtle grass Thalassia testudinum were collected from all
locations, but shoal grass Halodule wrightii was only collected at locations marked with a single asterisk (*). 1 = Villa Pes-
quera, Dorado; 2 = Punta Salinas, Toa Baja; 3 = Escambrón, San Juan; 4 = Isla Verde, Carolina; 5 = Bahia Beach Resort, Rio
Grande; 6 = Palm Vista Seven Seas, Fajardo; 7 = Palomino Island, Fajardo; 8 = Fajardo (Marina); 9 = El Corcho, Naguabo; 10
= Playa de Humacao (Humacao Beach); 11a = Jobos Bay’s Dock, Guayama; 11b = Jobos Bay’s Boca del Infierno, Guayama; 12a
= Las Mareas, Salinas; 12b = Central Aguirre, Salinas; 13 = La Guancha, Ponce; 14 = Guánica; 15 = Joyuda, Cabo Rojo; 16 =
Isabela; 17 = Cataño. **Denotes locations where seagrass collections and manatee toxoplasmosis mortalities have been docu-

mented (Bossart et al. 2012). Map source: D-maps.com (http://d-maps.com/carte.php?&num_car=23081&lang=en)
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during necropsy, and formalin-fixed heart, lung,
diaphragm, and liver were collected from 1 of these
animals. Serum samples were refrigerated (4°C) and
shipped on ice to the UTCVM. Once received, sam-
ples were frozen (−80°C) until testing.

Florida manatees

Serum and plasma samples (n = 341) from wild
Florida manatees were collected by the US Geologi-
cal Survey (USGS) during manatee health assess-
ments at various capture locations (Fig. 2). Serum
samples (n = 10) from dead Florida manatees were
collected during necropsies by the Florida Fish and
Wildlife Conservation Commission, Marine Mammal
Pathobiology Laboratory. All serum and plasma sam-
ples were transported frozen on dry ice to the
UTCVM and stored (−80°C) until testing.

Seagrass processing, concentration method, 
and PCR

Seagrass samples blended with Tween 20 deter-
gent and water were strained through cheesecloth,

and underwent a series of rinsing, centrifuging, and
decanting supernatant until a small pellet of sedi-
ment remained similar to that described by Gerhold
et al. (2015). An aliquot of the pellet was concen-
trated using centrifugal flotation with sucrose solu-
tion as described by Bowman (2013) to determine if
oocysts were present.

The rinsed, concentrated products underwent
DNA extraction using the ZR Fecal DNA Prep Kit
(Zymo Research). Primers TOX4 and TOX5 that
amplify a 529 bp high-copy-repeat in Toxoplasma
gondii were used for the PCR procedure described
by Homan et al. (2000). DNA extracted from T. gondii
oocysts that were obtained from fresh cat feces was
used as a positive control, and water was used as a
negative control. PCR products were separated on a
1% agarose gel with ethidium bromide, and ampli-
fied DNA was visualized using UV light. Target PCR
products were excised, purified, and submitted to the
University of Tennessee’s sequencing laboratory.
Resultant sequences were aligned in Sequencer, and
consensus sequences were subjected to a BLAST
analysis in GenBank.

Modified agglutination test (MAT) and nested PCR

All sera and plasma collected from manatees were
tested for T. gondii immunoglobulin G (IgG) anti -
bodies using the MAT test kit (Biomerieux). The
 procedure incorporated modifications to maximize
sensitivity and specificity (Dubey & Desmonts 1987,
Dubey et al. 1995) by using whole formalin-fixed
tachyzoite antigen to detect antibodies, and each
plate included a goat-derived positive and negative
control from the kit. Following the standard MAT
interpretations established at the UTCVM, Diagnos-
tic Parasitology Laboratory, an IgG titer ≥1:32 is the
lowest detectable positive titer. Confidence in inter-
pretation increases with higher titers due to the sub-
jectivity of the visual determination.

A whole blood clot (n = 1) from 1 Antillean manatee
testing inconclusive on the MAT underwent nested
PCR following the procedure of Su et al. (2010).

RESULTS

Puerto Rico seagrasses

No Toxoplasma gondii oocysts were recovered
from seagrass samples. Sequences from 2 PCR bands
were identified as bacterial by BLAST analysis.
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Fig. 2. Florida manatee Trichechus manatus latirostris US
Geological Survey (USGS) health assessment locations in
Florida (FL; +: 27.66° N, 81.52° W) and Georgia (GA), USA. CR
= Crystal River, FL; HS = Homosassa Springs, FL; EP = Ever-
glades National Park, FL; GA = South Cumberland Island,
GA; BR = Brevard County, FL; PH = Panhandle, FL; PE = Port
 Everglades, FL; NP = Naples, FL. Figure provided by USGS
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Florida and Antillean manatees

None of the Antillean and Florida manatee sera
and plasma samples (0%; n = 356) was positive for
T. gondii antibodies using the MAT. One necropsied
Antillean manatee was inconclusive on MAT; how-
ever, histological examination of this animal’s tissues
showed no evidence of T. gondii cysts or tachyzoites,
and nested PCR on the blood clot from this animal
was negative.

DISCUSSION

Puerto Rico seagrasses

Determining the significance of our findings is dif-
ficult given the limited sample size and lack of pub-
lished reports on Toxoplasma gondii oocyst conta -
mination of seagrasses. However, we do know that
fresh water runoff, coastal development, biofilm, in -
ver tebrate movement, filter-feeding fish, and bi valves
have been implicated as facilitators for T. gondii dis-
tribution in the ocean and as modes of transmission to
marine mammals (Lindsay et al. 2001, Shapiro et al.
2014, VanWormer et al. 2016). Oocyst accumulations
within filter-feeding bivalves and aquatic snails affil-
iated with biofilm in brown kelp forests have been
directly connected to toxoplasmosis-related mortali-
ties in sea otters (Miller et al. 2002, Mazzillo et al.
2013). Given these connections, investigations of
bivalves and aquatic snails in manatee environments
is recommended.

Florida and Antillean manatees

Our study indicates a lower seroprevalence (0%) of
T. gondii in both subspecies than previous reports of
3% (n = 30) in Antillean manatees (Bossart et al.
2012) and 6% (n = 44) in Florida manatees (Smith et
al. 2016). Possible explanations for the variation in
seroprevalence reports in these manatee subspecies
include: our sample size is too low, titers are below
MAT-detectable limits, or the behavior of wild mana-
tees reduces their exposure risk to the infective
T. gondii oocysts and the cats that shed them as com-
pared to captive or range-dependent animals.

The MAT is considered the gold standard in
T. gondii testing due to its high sensitivity (82.9%)
and specificity (90.29%) in pigs without the need for a
host species-specific conjugate (Dubey et al. 1995).
Although the MAT has been used extensively in

many terrestrial and marine species, it has not been
validated in these species and does not determine the
presence or absence of disease. Given previous re-
ports of low titers (1:25 and 1:32) in both subspecies of
the West Indian manatee (Bossart et al. 2012, Smith et
al. 2016) and in the Amazonian manatee (Delgado et
al. 2013), it is possible that our study titers were below
the detection limit of 1:32. The high seroprevalence in
Amazonian manatees often without signs of clinical
disease suggests that T. gondii infections in immuno-
competent manatees are likely subclinical (Delgado
et al. 2013). T. gondii infection in the Antillean and
Florida manatee populations is probably rare and
suggests a low risk of parasite infection to sirenians.
This risk is likely higher in areas of wetland loss or sit-
uations where a point source contamination (e.g. high
feral cat numbers associated with natural watershed
areas) can be identified, or in captive animals.

Serology, bioassay, and genotyping should be com-
ponents of future studies if we are to draw clear con-
clusions regarding the source, transmission routes,
and infection status of T. gondii to marine mammals.
This was the first study to investigate the potential
oocyst contamination of the manatee diet. Similar
studies are important for understanding the epidemi-
ology of T. gondii in herbivorous marine mammals.
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